Structural basis of rifampin inactivation by rifampin phosphotransferase.

نویسندگان

  • Xiaofeng Qi
  • Wei Lin
  • Miaolian Ma
  • Chengyuan Wang
  • Yang He
  • Nisha He
  • Jing Gao
  • Hu Zhou
  • Youli Xiao
  • Yong Wang
  • Peng Zhang
چکیده

Rifampin (RIF) is a first-line drug used for the treatment of tuberculosis and other bacterial infections. Various RIF resistance mechanisms have been reported, and recently an RIF-inactivation enzyme, RIF phosphotransferase (RPH), was reported to phosphorylate RIF at its C21 hydroxyl at the cost of ATP. However, the underlying molecular mechanism remained unknown. Here, we solve the structures of RPH from Listeria monocytogenes (LmRPH) in different conformations. LmRPH comprises three domains: an ATP-binding domain (AD), an RIF-binding domain (RD), and a catalytic His-containing domain (HD). Structural analyses reveal that the C-terminal HD can swing between the AD and RD, like a toggle switch, to transfer phosphate. In addition to its catalytic role, the HD can bind to the AD and induce conformational changes that stabilize ATP binding, and the binding of the HD to the RD is required for the formation of the RIF-binding pocket. A line of hydrophobic residues forms the RIF-binding pocket and interacts with the 1-amino, 2-naphthol, 4-sulfonic acid and naphthol moieties of RIF. The R group of RIF points toward the outside of the pocket, explaining the low substrate selectivity of RPH. Four residues near the C21 hydroxyl of RIF, His825, Arg666, Lys670, and Gln337, were found to play essential roles in the phosphorylation of RIF; among these the His825 residue may function as the phosphate acceptor and donor. Our study reveals the molecular mechanism of RIF phosphorylation catalyzed by RPH and will guide the development of a new generation of rifamycins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective Effects of Vitamin C and NAC on the Toxicity of Rifampin on Hepg2 Cells

Rifampin, an antibiotic widely used for the treatment of mycobacterial infections, produceshepatic, renal and bone marrow toxicity in human and animals. In this study, the protectiveeffects of vitamin C and n-acetylcysteine (NAC) on the toxicity of rifampin on HepG2 cellswere investigated.Human hepatoma cells (HepG2) were cultured in 96-well M of rifampin in the presence ofmicroplate and expose...

متن کامل

Protective Effects of Vitamin C and NAC on the Toxicity of Rifampin on Hepg2 Cells

Rifampin, an antibiotic widely used for the treatment of mycobacterial infections, produceshepatic, renal and bone marrow toxicity in human and animals. In this study, the protectiveeffects of vitamin C and n-acetylcysteine (NAC) on the toxicity of rifampin on HepG2 cellswere investigated.Human hepatoma cells (HepG2) were cultured in 96-well M of rifampin in the presence ofmicroplate and expose...

متن کامل

Preparation and In-vitro Evaluation of Rifampin-loaded Mesoporous Silica Nanoaggregates by an Experimental Design

The goal of this research is preparation, optimization and in-vitro evaluation of rifampin-loaded silica nanaoparticles in order to use in pulmonary drug delivery. Nanoparticles are exhaled because of thier small size, Preparation of nanoaggregates in micron-sized scale and re-disrpersion of them after the deposition in the lung is one approach in order to overcome this problem, which we used i...

متن کامل

Preparation and In-vitro Evaluation of Rifampin-loaded Mesoporous Silica Nanoaggregates by an Experimental Design

The goal of this research is preparation, optimization and in-vitro evaluation of rifampin-loaded silica nanaoparticles in order to use in pulmonary drug delivery. Nanoparticles are exhaled because of thier small size, Preparation of nanoaggregates in micron-sized scale and re-disrpersion of them after the deposition in the lung is one approach in order to overcome this problem, which we used i...

متن کامل

Preparation and Characterization of Rifampin Loaded Mesoporous Silica Nanoparticles as a Potential System for Pulmonary Drug Delivery

The goal of this research is to determine the feasibility of loading rifampin into mesoporous silica nanoparticles. Rifampin was selected as a model lipophilic molecule since it is a well-documented and much used anti tuberculosis drug. The mesoporous silica nanoparticles were prepared by using Tetraethyl ortho silicate and cetyltrimethyl ammonium bromide (as surfactant); The prepared nanoparti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 14  شماره 

صفحات  -

تاریخ انتشار 2016